LIST OF ILLUSTRATIONS

Figure			2	Page
1.	Hydrostatic Extrusions of Aluminum Alloys			5
2.	Hydrostatic Extrusions of High Strength and Brittle Materials . $\ .$		•	5
3.	Hydrostatically Extruded Tubing From Three Alloys			7
4.	Hydrostatic-Extrusion Tooling Installed in 700-Ton Vertical Hydraulic Press at Battelle			9
5.	Assembly Drawing of Tooling for Hydrostatic Extrusion			10
6.	Details of Hydrostatic Extrusion Process Showing the Stem and Die Seal Methods, and Partially Extruded Billet			12
7.	Temperature Resistivity Curve for Manganin Wire			13
8.	High-Pressure Transducer Developed at Battelle for Measuring High Fluid Pressures at Room and Elevated Temperatures		•	14
9.	Die Seal Arrangements Evaluated in Hydrostatic Extrusion	•		16
10.	Stem-Seal Arrangement Used for Warm Hydrostatic Extrusion .			17
11.	Die Design With Helical Groove in Conical-Entry Surface			18
12.	Relationship Between Extrusion Pressure, Extrusion Ratio, and Billet Hardness			34
13.	Effect of Extrusion Ratio on Fluid Runout Pressures in the Hydrostatic Extrusion of 7075-O Aluminum Rounds		·	37
14.	Effect of Fluid and Billet Lubricant on Pressure-Displacement Curves Obtained in the Hydrostatic Extrusion of 7075-O Aluminum at a Ratio of 20:1			42
15.	Two Billet Nose Designs Evaluated in Hydrostatic Extrusion			44
16.	Effect of Billet Nose Shape on Pressure-Displacement Curves Obtained in the Hydrostatic Extrusion of 7075-O Aluminum at a Ratio of 40:1			45
17.	Effect of Extrusion Ratio on Pressures Required for Hydrostatic Extrusion of AISI 4340 Steel			52
18.	Effect of Stem Speed on Fluid Pressures for Cold Hydrostatic Extrusion of AISI 4340 at an Extrusion Ratio of 5:1			59
19.	Effect of Extrusion Ratio on Runout-Fluid Pressures for Ti-6Al-4V Rounds	<u>,</u>		69
	ix			

LIST OF ILLUSTRATIONS (Continued)

Figure			Page
20.	Comparison of Surface Finishes on Cold Hydrostatic Extrusions of Ti-6Al-4V Made at a Ratio of 3.33:1	.1	71
21.	Influence of Extrusion Ratio on Pressures for Beryllium and Wrought TZM	No. Control	83
22.	Standard Die Profile and Two Dies Designed to Eliminate Cracking in Brittle Materials	4	85
23.	Influence of Double-Reduction Die on Cracking of Hydrostatic Extrusions of Wrought TZM Molybdenum Alloy	120	87
24.	Influence of Die Design on Cracking in Hydrostatic Extrusions of Beryllium	20 •	90
25.	Photomicrographs of Beryllium Cold Hydrostatically Extruded at a Ratio of 4:1 Through Battelle's Double-Reduction Die	•	92
26.	Classification of Pressure-Displacement Curves Obtained in Hydrostatic Extrusion	•	95
27.	Floating Mandrel Arrangement for Hydrostatic Extrusion of Tubing .		99
28.	Effect of Extrusion Ratio on Pressure for Cold Hydrostatic Extrusion of 7075-O Aluminum Tubing and Rounds	•	103
29.	Effect of Extrusion Ratio on Pressure for Cold Hydrostatic Extrusion of AISI 4340 Tubing and Rounds	•	105
30.	Effect of Extrusion Ratio on Pressure for Cold Hydrostatic Extrusion of Ti-6Al-4V Tubing and Rounds	•	108
31.	Two Die Designs Used in the Hydrostatic Extrusion of T-Sections From Round Billets	•	111
32.	Die Insert and Orifice Dimensions for a Re-Entrant Channel Section .		112
33.	Die Design for Hydrostatic Extrusion of T-Section Billets		112
34.	T-Sections Produced by HYDRAW and Re-Extrusion	•	119
35.	Tooling Set-Up for HYDRAW of Wire	•	121
36.	Two Methods of Unreeling Wire From Within a Small-Bore Container		123
37.	Counterbored Tandem Billet Joint Design Evaluated in Hydrostatic Extrusion		134
38.	Tapered Tandem Billet Joint Design Evaluated in Hydrostatic Extrusion	•	134